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I. INTRODUCTION

1.1 PROJECT OVERVIEW

The U.S. Navy in conjunction with the NASA Ames Research Center worked jointly to

develop a supersonic oblique wing research aircraft (OWRA). A major requirement of the OWRA

research program is the synthesis of flight control laws that stabilize and decouple the oblique wing

aircraft with its inherent highly coupled, lightly damped motion. The control laws must also

provide acceptable handling qualities throughout the Mach number (subsonic and supersonic),

angle of attack, load factor and wing skew flight envelope. A major goal of the OWRA program is

to compare various advanced control law design methodologies via analysis and pilot in-the-loop

simulation.

The goal of the research program described by this report is to explore the application of

multivariable, explicit model-following control system design techniques to the synthesis of control

laws for the OWRA. SCT was tasked to investigate the application of these techniques. Major

design considerations included: (1) methodology for directly incorporating flying quality criteria

into a linear quadratic regulator design, (2) methodology for designing a control law that decouples

the aircraft's response to pilot commands and also provides attenuation to disturbances and (3)

methodology to provide gain scheduling to accommodate changes in flight Mach number, altitude

and wing skew position.

Table 1.1 provides a specification of the nine flight conditions included for the design.

Table 1.1

Flight Control Law Design Points

Flight Altitude
Cond No (ft)

1 20,000

Mach
No

0.8

Wing Skew
(deg)

45

55

Load
Factor

2 20,000 0.8 1

3 20,000 0.8 65 1

4 29,000 0.8 55 1

5 29,000 1.2 55 1

1.4 55 1

0.9 65 1

6 29,000

7 34,000

8 34,000

9 34,000

1.2 65 1

1.6 65 1
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Thisdesign study included a number of specific items:

- Design and evaluation of control laws at each of the nine flight conditions.

Development of a gain scheduling strategy to combine the nine individual designs

into a unified control law that could operate throughout the range of Mach number,

altitude and wing skew combinations that comprise the OWRA's operational flight

envelope.

- Evaluation of the robustness of the linearized control laws at the nine design

conditions.

- Documentation of the strengths and weaknesses of the selected design methodology

for incorporating flying quality requirements and for providing decoupled control.

1.2 BACKGROUND

1.2.10WRA Flight Demonstrator Program

Oblique-wing airplanes have advantages for many missions, both military and civilian [ 1].

For missions that require both long subsonic range and endurance and a good supersonic dash

capability, an oblique-wing design will have lower wave drag, lower structural weight, and

reduced ground storage area when compared with other variable geometry configuration. Analytic

studies, wind tunnel tests, and low-speed lightweight aircraft flight tests have been conducted, but

as yet no high-performance demonstrator or operational aircraft has been developed due to the high

risk inherent in such a departure from conventional designs [2]. Recent advances in composite

structural technology make it possible to tailor oblique-wing panels for multiple flight-operating

conditions while retaining the weight advantages of new materials.

The NASA Ames Research Center, Moffett Field (Ames-Moffett) and Dryden Flight

Research Facility (Ames-Dryden), Edwards, California, in conjunction with the U.S. Navy,

developed designs for an oblique wing research airplane (OWRA) demonstrator [3]. NASA's F-8

digital-fly-by-wire airplane was targeted to be modified for the oblique-wing demonstrator.

Synthesis of a flight control system that provides both acceptable vehicle stabilization and handling

qualities across the Mach number-altitude, angle of attack, and wing skew flight envelope was a

major goal of the U.S. Navy / NASA program.

The advantages of an oblique wing cannot be obtained without overcoming many design

challenges. Oblique-wing airplanes show large cross-coupling in control response and dynamic

behavior which is not present in conventional symmetric airplanes. The open-loop cross-coupling

of the OWRA is characterized as a relatively large roll and lateral acceleration coupling with pitch

command inputs and pitch coupling with roll command inputs.
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1.2.20WRA Controls Technology Research

Development of a flight control system that provides excellent flying qualities for an aircraft

such as the OWRA represents a significant design challenge. Multivariable synthesis techniques

are preferred because the OWRA has significant coupling between the longitudinal and lateral-

directional degrees of freedom. This coupling arises from both aerodynamic and inertial cross-

coupling sources. Several research studies have been sponsored to look at applying different

multivariable synthesis techniques to the task of designing a decoupled flight control system for the

OWRA. This section provides a summary of several research programs that addressed flight

control design issues for the OWRA. The next section summarizes a simulation study that

investigated one of the flight control system designs.

Alag, Kemple and Pahle [8] developed control laws for the OWRA by using an

eigensystem synthesis technique. For their method, desired frequency and damping properties, as

dictated by the design handling qualities criteria, were used to determine desired eigenvalue

locations. Selection of the desired eigenvectors was based on desired modal response

characteristics. The task of relating eigenvectors to handling qualities criteria was not presented in

referenced paper. The eigensystem synthesis methodology was used to determine a state feedback

gain matrix. Feedforward gains for the control law were based on perfect model-following

concepts [9 &10]. The designed control law did not include integral error control. Design results

were presented for one design flight condition (Case 1 from Table 1.1). Reasonable decoupled

results were obtained for aileron and elevator commands for the one flight condition evaluated.

Alag, Kemple, Pahle, Bresina, and Bartoli [11] explored explicit model-following

techniques because the design technique presented in Reference 8 produced a control law which

required excessive control surface activity. Linear quadratic techniques were used for the

methodology presented in Reference 11. Their formulation of the problem did not include integral

error control or frequency shaping. The authors showed that explicit model-following, linear

quadratic techniques are suitable for designing a control law that decouples the OWRA's response.

Enns [12 & 13] used frequency domain based multivariable synthesis techniques to design

decoupling control laws for the OWRA. Reference 12 describes the application of a loop shaping

approach called LQG/LTR (Linear-Quadratic-Gaussian with Loop Transfer Recovery). LQG/LTR

is a modification of the LQG synthesis. The LQG problem is augmented by appending dynamics

to the plant model to represent the desired loop recovery shapes for the aircraft's response. The

control specification is formulated at the plant output and the multiple loops are designed to satisfy

singular value constraints on the loop transfer function. A second frequency domain based

multivariable design technique, called H**, is described in Reference 13. The I-t** method is a

method that determines the compensator on the basis of meeting various constraints on the

sensitivity functions. The desirable feature of H** synthesis is that it directly addresses the

feedback design issues of achieving performance (i.e., tracking of commanded response and

disturbance rejection) with with system stability in the presence of various sources of modeling

uncertainty.
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1.2.3 Piloted Evaluation of OWRA with Decoupling Control Laws

To evaluate a proposed flight control system for the OWRA, the Vertical Motion Simulator

(VMS) at NASA Ames-Moffett was used [1]. The goals of this investigation were as follows:

obtain preliminary pilot evaluations of a prototype flight control system designed to provide

decoupled handling qualities; identify important response variables in the evaluation of this unusual

configuration; and develop criteria and requirements for use in future control laws for highly

coupled airplanes. The VMS provided a unique capability to investigate the OWRA dynamic

characteristics early in the control system design phase in conjunction with realistic large motion

and visual simulation systems.

Six pilots participated in the VMS evaluation of the OWRA at five discrete flight conditions

ranging from low altitude subsonic Math numbers to moderate altitude supersonic Mach numbers

(note, not all of the five test points match conditions listed in Table 1.1). The control law was a

prototype system based on the loop-shaping approach [12] with the specific objectives of

decoupling the longitudinal and lateral-directional motions of the aircraft and to satisfy conventional

flight control objectives, including gust attenuation, stability augmentation, good command

tracking, good handling qualities, and stability robustness with respect to model uncertainty. This

control law did not use gain scheduling; therefore, all flights were flown at fixed wing skew and

were limited to relatively small variations in Math number, altitude, and angle of attack about each

design point.

1.3 REPORT SUMMARY

This report presents a description of the design and evaluation methodology which has

been used to develop an explicit model-following, integrated flight/propulsion control system for

the Oblique Wing Research Aircraft. Section II describes the physical, mass and inertial properties

that are relevant to the control design task, and it provides background information covering the

aerodynamic data base which was used to extract linear state models for the nine flight conditions.

Section III presents a functional description of the integrated flight/propulsion control system

which has been designed for the OWRA. This description is included in the report as a means to

describe the philosophy that underlies the control system design. The design methodology is

presented in Section III. The control system is designed to satisfy both mission level operational

requirements and handling quality requirements. Mission/operational requirements were

established by NASA Dryden for the Oblique Wing Research Airplane. Handling quality

requirements are essentially based on interpretations of the MIL-F-8785C. A multistep control

system design procedure, originally developed for the DMICS program, was adopted for the

OWRA flight control system design task. An evaluation of the explicit model-following control

system designed for the Oblique Wing Research Aircraft is presented in Section V. The primary

objective of this evaluation centered on demonstrating the model-following performance of the gain

scheduled control system. Finally, conclusions based on the design experience derived form this

study are presented in Section VI.
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II. AIRCRAFT DESCRIPTION

2.1 PHYSICAL CHARACTERISTICS

The oblique-wing research airplane (OWRA) considered for this investigation is based

upon a modified version of N,,_SA's F-8 digital-fly-by-wire (DFBW) airplane. Planned

modifications include a variable incidence composite wing with a pivot-skew assembly, flight

control computers and interfaces, and differential horizontal stabilizer. The skewed wing is

designed to pivot from O° to 65* with the right wing forward. The airplane's aerodynamic controls

consist of the following movable surfaces: wing ailerons for roll control, symmetric horizontal tail

for pitch control, asymmetric horizontal tail for roll control and rudder for directional control.

Trailing edge flaps are used for lift augmentation during low speed flight. A three view drawing of

the OWRA is presented in Figure 2-1. Reference geometry for the OWRA is defined as follows:

(Sw = 200ft 2,bw = 542 in,and Cw = 57.3 in).

Figure 2-10WRA General Arrangement

The weight of the OWRA ranges from 23,500 to an empty weight of 18,800 lb. The

weight used for this study was held constant at 21,116 lb which represented 50% fuel loading.

The mass and center of gravity characteristics are presented in Figures 2.2 and 2.3, respectively.
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2.2 AERODYNAMIC DATA BASE

The aerodynamic data base used in the OWRA was a preliminary nonlinear data set

obtained from wind-tunnel tests and augmented with appropriately scaled F-8 data and computed

aerodynamic characteristics. The data were nonlinear with angle of attack, Mach number, and

_,ing skew, but not with sideslip. The angle of attack ranged from -4 ° to 16 ° . Mach numbers

ranged from 0.25 to 1.6, and wing skews were 0 ° , 45 ° , 55 ° , and 65 °. The data set did not

cover all wing skews at all Math numbers and was somewhat limited in scope, but was

satisfactory for this preliminary study. Linearized state space matrices representing the open loop

aerodynamic characteristics for each of the nine flight conditions for lg trimmed flight were

obtained from a NASA Dryden simulation of the OWRA that included this aerodynamic data base.

The location of the nine design points relative to the operational limits is shown in Figure 2-4 for

wing skew positions of A = 45 ° , 55 ° , and 65 °.
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III. FLIGHT CONTROL FUNCTIONAL DESCRIPTION

3.1 OVERVIEW

This section presents a brief functional description of the integrated flight/propulsion

control system which has been designed for the OWRA. This description is included in the report

as a means to describe the philosophy that underlies the control system design. Reference 15

provides a complete description of this control system.

This IFPC structure is based on a hierarchical and decentralized design philosophy. With

this design approach, mission level design problems (e.g., flying qualities, tactical combat, etc.)

and function level problems (e.g., engine surge margin, engine temperature limits, control surface

rates, etc. ) are approached as separate design tasks. The mission level controller is the flight

control system, and the function level controller of the hierarchical design is the propulsion control

system. The structure for the flight control and the propulsion control systems is shown in Figure

3-1.

_l Right

Control
System

6CMD I C°ntr°l I
-'- Surface

Actuatocs

TCMD

I Propu_ion
-'_ Control

System

t

Figure 3-1 IFPC Control System Smacture

The OWRA flight control system is based upon an explicit model-following structure. As

illustrated in Figure 3-2, the flight control system structure includes three major elements: a

maneuver command generator, a proportional-integral-error regulator, and a control selector. The

purpose of this section is to describe the design features of these three components that comprise

the OWRA flight control system.

Compemm',ion

Pilot

Inputs

[ Maneuver ___ y_1 _l'_l _

Sudace
Actuators

J T

Figure 3-2 Flight Control System Structure
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3.2 MANEUVER COMMAND GENERATOR DESCRIPTION

The maneuver command generator is the forward path model of the explicit model-

following control system. It is designed to directly embody the desired flying qualities

characteristics for each mode of flight. The primary inputs for the MCG are the pilot's controller

commands (e.g., longitudinal stick force), and the outputs are a vector of commanded flight

variables. The commanded response is used to form the error and feedforward terms for the

model-following regulator.

The MCG comprises two major sub-elements: a steady state command generator and a

response command generator, as indicated in Figure 3-3

Pilot

Controller

Commands

Trim Switch

Discretes

J Steady-State
Command

v I Generator

Y
SELECT

h..=

b=.,==
v

Response
Command

Generator

_(CMD

Y
CMD

J YCMD

Figure 3-3 MCG Structure

The steady state command generator produces the commanded steady state response based

on the desired sensitivity for each cockpit controller. Control sensitivity requirements include

factors such as the desired stick force per g (Fs/g). The sensitivity terms are programmed as a

function of flight condition in order to provide a match between what the pilot can command and

what the aircraft can produce. A special form of tuning the control sensitivities to the aircraft's

capabilities includes the incorporation of command limiters. For example, limits on commanded

longitudinal acceleration or vertical velocity can be used to implement aircraft performance limits.

Many of the design features of the steady state command generator are illustrated in Figure 3-4, a

block diagram of the longitudinal steady state command generator.

The response command generator is designed to generate the desired dynamic response and

the desired modal coupling/de, coupling between various responses. The structure of the response

command generator is based on block diagrams that embody the desired transfer function

properties for the commanded responses. The OWRA longitudinal command generator is

presented in Figure 3-5 to illustrate the structure of a typical response command generator.
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The desired dynamic response is implemented with a prefilter. The design of the prefilters

is based on the following considerations:

The pref'dter provides the commanded response and its first and second derivative.

The derivatives are used for fcedforward control and modal reconstruction. For

example, the load factor filter generates _ZCMD and _IZCMD in addition to nZCMD"

All three of these quantities are used to reconstruct QCMD and _CMD as illustrated

in Figure 3-6. The pitch acceleration feedforward command signal provides a direct

link between the pilot's stick and the control surface. The feedforward signal is

important for model following control laws in that it greatly reduces the lag in the

aircraft's response to pilot inputs.

The properties of the pref'flter are selected such that they are all related to one design

parameter. The selected design parameter for the MCG prd'flter is the desired rise

time. Two different prefilter forms are used for the MCG models.

Pr¢filler Form #1

YCMD

YSELECT.

to2"C (S +l/x)

s 2 + 2_tos + to 2

where,

o)

Pr_filter Form #2

= 1.789 / '_R ;

YCMD =
YSELECT-

X = 0.625"X R ;

CO2

s 2+2_cos+co 2

= 0.8944 X R

where,

to = 3.360/'c R ; _ = 0.8944x R

This set of filter parameters provides a response that is characterized by a minimal

overshoot and a rapid settling time. Figure 3-6 illustrates the formulation of a

typical prefilter.
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3.3 REGULATOR DESCRIPTION

The flight control system regulator is designed to provide stabilization, reference signal

tracking (i.e., model-following) and disturbance rejection. The regulator control laws are based on

multivariable synthesis techniques, using explicit model-following and a linear quadratic

formulations with output error weightings [16]. A special feature of this regulator is that it

generates generalized control commands, rather then physical control commands (i.e., pitch rate

error produces pitch acceleration, instead of horizontal tail deflection). The use of generalized

controls provides a decoupling between the design and implementation of control law gains from

the selection of specific controllers for producing the desired control acceleration. Thus, the focus

for the regulator design is the achievement of good model-following performance.

The structure for the flight control system regulator is presented in Figure 3-7. This

structure is common to both the longitudinal and lateral-directional regulators. Regulator inputs

include proportional errors, integral errors and feedforward commands that provide control

response quickening. The synchronization logic shown in Figure 3-7 is used to zero proportional

error signals, to break inputs to the integral error integrators and to zero integral error signals

whenever the control mode is disengaged.

3.4 CONTROL SELECTOR DESCRIPTION

The control selector provides the controller mechanization function of the flight control

system. Figure 3-8 shows the structure of control selector module. Inputs to the control selector

come from the longitudinal and lateral-directional regulators. Control selector outputs include
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aerodynamic control surface and thrust commands. The control selector module includes three

primary components: control transformation blocks and control surface configuration manager.

The longitudinal and lateral-directional transformation blocks implement a pseudo inverse

to convert generalized control commands to physical control commands. The pseudo inverse,

which determines the best selection of controls, may be computed on-line, and its solution is based

on internal models o r 'he aerodynamic and propulsion controller effectiveness and remaining

control power

A

YAe

Figure 3-7 Regulator Structure
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IV. DESIGN METHODOLOGY

4.1 OVERVIEW

The purpose of this section is to describes the design methodology for the flight control

system. The flight control system is designed to satisfy both mission level operational

requirements and handling quality requirements. Mission/operational requirements were

established by NASA Dryden for the Oblique Wing Research Airplane. Handling quality

requirements are essentially based on interpretations of the MIL-F-8785C.

A multistep flight control system design procedure, which was developed for the DMICS

program [14], was adopted for the OWRA flight control system design task, see Figure 4-1.

Features of each step are described in this section.

• Handling Qualities
Requirements

• Mission Requirements

• PVI Requirements

• Vehicle & Propulsion
System Constraints

J

Maneuver Command Gen

• Select Desired Response
Properties

• Select Operational & Design
Constraints

• Design MCG Models
• Develope Linear State Model of

the MCG

/
Iterate for /Design Deficiencies

Iterate for
Design Deficiencies

/
Design Verification

• Design Specification Compliance

• Linear System Analysis
Performance robustness

Stability robustness
• Operational evaluation

Regulator

• Build System Model
• Compute State Feedback

Control Law
• Transform to Output Feedback
• Simplify Control Law
• Develop Gains Schedules
• Reoptimize
• Develope Integrator Logic

Iterate for
Design Deficiencies

Control Selector

• Compute generalized to
physical coordinate
transtormation

• Determine saturation logic
• Design Command Limiting

Log_

Figure 4-1 Flight Control Design Procedure
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Linear math models of the aircraft and functional control design requirements must be

available in order to start the flight control design process. The functional control design

requirements are used to specify control modes and desired response properties for the flight

control system. The initial step for flight control design involves designing the Maneuver

Command Generator and the multivariable model-following regulator. The regulator synthesis is

based on "_Linear Quadratic Regulator (LQR) technique that includes integral error control and

frequ_.,..:y shaping. The next step deals with implementation issues such as the development of

gain schedules, mode switching logic, integrator logic, etc.. The final steps involve designing the

control selector. Detailed evaluations of the design at each stages of the design process represents

a key feature of the overall design process.

4.2 MANEUVER COMMAND GENERATOR DESIGN

4.2.1 Design Requirements

The limit load factor for the F-80WRA is -2 g's to +4 g's which sets its maneuvering

capabilities. For the purposes of this investigation the F-80WRA is considered to be a Class IV-L

airplane (i.e. a high-maneuverability land-based airplane) as defined by MIL-F-8785C. Level 1

flying qualities are a design goal for the flight control system design. A design objective is to

provide the best possible flying qualities across the entire flight envelope.

The flying qualities requirements as specified in MIL-F-8785C are used as a guide for both

longitudina/and lateral-directional cona'ol. A specific design objective for the flight control system

is to minimize all cross-axis coupling and to provide flying qualities similar to a conventional

symmetric wing airplane. A preliminary requirement for cross axis coupling is stated in the

following:

- For all intended lateral-directional control maneuvers and random disturbances the

resulting longitudinal response should be minimized.

- For all intended longitudinal control maneuvers and random disturbances the

resulting lateral-directional response should be minimized.

The pilot's concerns and methods of control shall be the same as they are for a

conventional symmetrical airplane. Pilots tend to control the longitudinal or lateral-

directional axes independently. An oblique wing air01ane should not require unique

or unusual piloting control techniques.

4.2.1 Longitudinal MCG Design

The longitudinal Maneuver Command Generator is designed to generate the desired pitch

rate, load factor and airspeed responses for the up-and-away flight. A block diagram of the
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longitudinal MCG is presented in Figure 4-2. The longitudinal MCG is designed to decouple the

airspeed and load factor (i.e., flight path) responses. The interconnection between commanded

longitudinal acceleration and pitch rate is included to change the commanded angle-of-attack as

airspeed varies such that lg flight is maintained.

A%RIM

_SLON

RCMD Compensation

/
Lon0itu ina,+*

- Control -+'_(_ -"-

I Sensitivi_ I

_] Speed ControlSensitivity

Q&(z
Commmand

Filters

I AirspeedCompensation

VSELECT I Airspeed [
Commmand

v I Filter

Ii"j .
QCMD

h.=_
v

Gt
CMD

•v_D

v_

Figure 4-2 Longitudinal MCG

Pitch Rate and Angle-of-Attack Commands

Longitudinal conla'ol sensitivity is defined in terms of (Fs/g) (the stick force per g) MIL-F-

8785 specifies that the Fs/g must be in the following range for Level 1 flying qualities based on a

limit load factor of n z LIMrr = 4 g's

F
7.0 < _..._s< 15.6 lbsdg

g

Fs/g is computed from the following expression with the above limitations
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F AF
....l = .--.i =
g An

Z

AQ/An z)=

AQ/AFs}.

= 2929 for -_- - 0.63 deg/sec/lb
V RW ss

For the nine flight conditions considered, Fs/g is always set by the minimum requirement of Fs/g =

7 lbs/g.

Selected short period dynamics are tailored to provide acceptable load factor and pitch rate

responses. The following expressions define both responses:

2

Anzci o _sp

Anzs s 2 0_ s + 2S + 2_s p sp sp

AQcMD

AQss

2 (s-t-O)sp_02 + ,CO2 )

S2 + 2_spO_sp S + CO2sp

Thus, the short period dynamics are characterized by the selected short period frequency (C0sp),

short period damping (_sp) and the pitch rate zero (1/'t02). Without direct lift control, l/x02 is a

function of only the aircraft's lift-curve slope (CLa) and its flight condition. Thus, its value is

flight condition dependent and cannot be altered. Short period damping must be greater than _sp >

.035 to satisfy Level 1 requirements from MIL-F-5785C. A value of _ = 0.8944 is selected for the

MCG design to provide a response that is essentially deadbeat.

When direct lift control is not available, the speed of the load factor response and the ratio

of the maximum pitch rate overshoot relative to the steady state pitch rate (QMAx/Qss) are both a

function of the short period frequency. Increasing C0Sp quickens the load factor response and

increases the magnitude of pitch rate overshoot. Thus, selection of C0Sp involves a compromise

between loader factor and pitch rate response requirements. MIL-F-8785C provides a rational for

selecting desired values for C0sp as a function of nza (the change in load factor per a change in

angle-of-attack) and a parameter called CAP. CAP is the control anticipation parameter, and it is

defined as the ratio of the initial pitch acceleration to the steady state load factor (A(_ t=o / Anzs s ).
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The relationshipbetweeno_sp,CAPandQ_t_x/Qssis illustratedin Figure 4.-3. The Level 1flying
quality requirementsfor both CategoryA andB Flight Phasesarenotedin Figure 4-3. Figure 4-4
illustrates the impact of CAP on the load factor and pitch rate responsesfor a stepstick force
command. Theoverdrivenpitch rateresponseis for CategoryA Flight Phases(CAP -- 0.28). The

slower set of responses is for the Category B Flight Phase where CAP -- 0.085. The Flight

Category B value of CAP was selected for the OWRA longitudinal MCG design task because it

minimizes the pitch rate overshoot.

The following expressions model the desired short period parameters for the longitudinal

MCG.

W VRw

• X0Z = g _ SwCt_

W"

VRW :

g:

Sw :

CLot :

aircraft weight ~ lbs
airspeed - fps

gravity constant (32.2 fps 2)

dynamic pressure - psf

reference wing area ~ ft 2

aircraft lift curve slope - 1/rad

_Sw

. nz_=_Cl._

• Osp = _/CAP'nzct rad/s_

Values for these three parameters for each of the nine flight conditions are summarized in Table 4-1.
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Table 4-1

Summary of Longitudinal MCG Design Parameters

Flight
Cond No

Altitude

(ft)

9

Mach
No

29,000

i I

0.81 20,000

2 20,000 0.8

3 20,000 0.8

4 29,000 0.8

5

29,000

34,000

34,000

34,000

0.9

1.2.

1.6

Wing Skew
(deg)

45

55

65
i

55

nz a

(g's/rad)

20.33

18.84

12.56

12.83

¢.0Sp
(rad/s_)

1.31
i

1.27

1.03

1.04

(see)

1.27

1.37

2.07

1.95

55 31.86 1.65 1.19

55 38.73 1.81 1.14

65

65

0.94

1.22

1.50

10.31

17.62

26.3365

2.74

2.03

1.87

QIP_x

Qs5

Figure 4-3a

2.0

1.8

1.6

1.4

1.2

1.0

I _ _ ! ! _ ! ! ! I ! ! !|
........it h___h',Co;d_,_'.NO4 | .........!........-........t........"........"........i.......-!-
.......{....1"^=sS" I .........i........i........"........-........:'...._.-1-

.......i .i ! _Mti--otU.de = 2,'O00 |' I.........i......_.,._b;,,_Z,=o_' __,L

........ i......... _........ i ........ i......... _......... i........ ' ....... i......... _........ i......... .i......... _......... ;.......

._.....;........_ ........._........_........_.........i..L....i........i........"........_........"........i.......

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

to (rm/scc)
Ip

Trade-off Between Short Period Frequency and Pitch Rate Overshoot
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O0
sp

(rad/sec)

Figure 4-3b

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

I

................... ._..................._ ....................:....................." ............... Level 1 (Category A)
! i i _ • CAP=0.28

i i i i _" • ca =l.88md/sec

l

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

CAP

Impact of CAP on Short Period Frequency (Flight Condition #4)

CAP = 0.280 CAP = 0.085

2 Pitch Rate

........... ._.......... ,,_ ....

0.5
0
0 1 2 3 4 5 6

Time (see)

0.5

0.4

0.3

0.2

0.1

0
0

l.zmd Factor

........................ _...................... i .......................... i ..--z_. ..... _-..rr.v7 ":.'.':.'_":_.7."...................................

...................................................i...........................! i....................
1 2 3 4 5 6

'l_mc (scc)

Figure 4-4 Effect of CAP on MCG Response (Fit Cond #4)
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Airspeed Command

The speed control sensitivity function for the longitudinal MCG provides a simple

transformation between Math number and airspeed and limiting based on the aircraft's

performance capabilities. The Math number to true airspeed transformation is

VSELECT = 1117.6 _'0 arab MSELECT

The commanded speed response is designed to have a five second rise time, and it is

defined by the following transfer function.

o2( )VCMD= "Cv S +-l--v _v

VSEL s 2+2_v¢o s+co 2
V v

where,

"rv - 3.20 sec ; _v = 3.50 rad/sec and _v = 0.8944

The coupling between AV and Qcmd is included to cause a change in commanded angle of

attack for a change in airspeed. This compensation produces a decrease in angle of attack for an

increase in airspeed. This angle-of-attack command can be generated by varying attitude while

holding flight path angle constant (i.e., cos ¢ *Aot = A0 - Ay). Since A0 = _ Q, the compensation

loop from velocity into attitude is identical to AV .-o AQ. The gain between A0 and AV (also, AQ

and AV ) is developed from first principles:

W = 1/2 pV 2 Sw CL

where the lift coefficient is def'med by

CL = Ct_ + Ct_ ot

By substituting the rift coefficient expression into the equation relating weight and lift coefficient

W - 1/2 pV 2S (CL 0 + CLtx _)

and taking the derivative of above equation with respect to V
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0 = p V Sw CL0 + 1/2pV 2Sw CLtxO_OV

thefollowing expressionresults

AO_ - 2 CLo

AV- V CLQ t

Since A0 = Aot for A T = 0,

A0 AQ - 2 CL0

AV V CLa t

4.2.2 Lateral-Directional MCG Design

The lateral directional Maneuver Command Generation is designed to provide decoupled

control of roll attitude and sideslip. Lateral stick commands roll rate with roll attitude being held

whenever the stick is in detent (i.e., rate command/attitude hold). De.coupling sideslip and the roll

rate/attitude responses provides good turn coordination for roll commands and a wings level

sideslip response for pedal inputs. The latter feature is useful for managing crosswinds close to

the runway. The sideslip from rudder pedal command filter provides good Dutch roll damping and

a predictable sideslip response. With the wings held level for pedal inputs, small heading changes

can be made rapidly with pedal commands (i.e., A_ - AI3 for _ = 0). Figure 4-5 presents the

block diagram of the lateral-directional MCG.

ks
t.AT

Lateral

Control
Sensitivity

P
FS Roll Rate

Command
Rlter

CMD
v

PCMD

v

¢_CMD
w

PED

I Directional

Control
Sensitivity

PED

I Sideslip

Command
Filter

13CMD
ib.._
v

I_CMD
nh..-

Figure 4-5 Lateral-Directional MCG.
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Roll Rate Command

Lateral control sensitivity is defined in terms of the ratio of maximum steady state roll rate

to the maximum lateral stick displacement (i.e., APss/ASSLAT). Lateral control sensitivity is

selected to provide a steady state roll rate of 200 °/see for a 4 in. stick deflection:

AP_8 = 200 deg/see : 50 deg/see/in
A_SLAT 4 in

A second order filter with a first order numerator is used to model the desired roll response.

PCMD

Pss

2 (s+I/ p)_p p

2
s2 + s ÷ COp

where,

1.789 and _p = 0.8944
"gp = 0.625 tp 90 ; top= tP 90

The parameters of this filter are selected to produce a first-order like response. The selected value

for the response rise time is tp90 - 1 see. As shown in Figure 4-6, this rise time produces a

response that is similar to a fast-order response which has a time constraint ofT R = 0.38 sec.

This is well below the one second limit as specified within M/L,-F-8785C for Level 1 flying

qualities.

g_

First Order Filter _ _ _ _ . Roll Rate MCG

i.2

0.8

0.6

0.4

0.2

0
0 0.5 1.5 2 2.5 3 3.5 4

Time(_c)

Figure 4-6 Comparison of First Order Filter and Roll Rate MC'G Filter Responses
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Sideslip Command

Directional control sensitivity is defined as the ratio between maximum sideslip and

maximum pedal force (i.e., AI3/AFpED). Directional control sensitivity is selected to provide AI3 =

3 o for a pedal force of 120 lbs.

A[_ 3 deg

AFpE D 120 lbs
= 0.025 deg/lb

The structures of the sideslip command filter is given by:

2xl_(s+[3CMD _13 1/'1:1_}

[3ss s 2 + 2_1_ ¢013s + o_213

For this filter, its parameters are set by equating m13 to the aircraft's value of Dutch roll frequency.

The damping ratio and the numerator time constant are defined as follows:

1

_13 =0"8944 ; _13 = °_DR and x13 - _1_ °)[3

The following approximation is used to define Dutch roll frequency:

to13= O_DR = _ -- 0.2765 "_ _ Cnl_

For the nine flight conditions studied £0DR has the following range of values: 2.46 < O)DR < 4.58

rad/sec. With _13= 0.8994, all Dutch roll requirements for Level 1 flying qualities (_DR > .49; _DR

t.0DR > .35; _DR > 1.0) are all surpassed by the selected design.

4.3 GENERALIZED ACTUATORS

When the flight control system regulator is designed, generalized controls are used to

represent the control power that can be produced by the aerodynamic control surfaces and the

propulsion system. The flight control structure as presented in Figure 3-2 can be redrawn as

shown in Figure 4-7 when generalized controls are used. The generalized controls description

includes two elements: actuator dynamics and control power.

0183:29m 4-11



Pilot i'

inputs

A

Yac

Ycmd + Yt

Maneuver _
Command

RegulatorGenerator

I Sensor L..,

Compensa_on ] -- I

Figure 4-7 Flight Control Structure with Generalized Controls

For the OWRA flight control system design, the generalized actuator dynamics are modeled

by the following transfer function:

8 0)6 x8 s +

* s 2 + 2_to6s + 0)_
_CMD

where,
1.789

= • and .[S = 0.8944
'c8 0.625 t_i90 ' 0)_- t8 90

where,

is the desired actuator rise time
t8 90

The need to represent the generalized actuator dynamics by a second order transfer function stems

from the methodology which is used to determine the regulator control law gains. The regulator

control law synthesis is based on solving a Linear Quadratic Regulator problem that includes

actuator deflection rates as elements of the performance function and a transformation that maps

state feedback gains to a corresponding set of output feedback gains. The structure of this second

order transfer function is based on a desire to match the first order properties of the actual control

surface actuators. The selected values for the damping ratio (_5) and the relative geometry of the

zero with respect to the complex poles (i.e., 1 / x _ = _5 °)8) provide a deadbeat response. The

speed of the response is set by the value which is selected for the desired rise time (t908). Based

on the time constants for the OWRA ailerons, elevator and rudder control surface actuators plus an

estimate for the engine's response, the following values were used to represent the generalized

actuator's dynamics:

0183:29m 4-12



Axis

Axial

t90s (see)

1.500

Vertical 0.130

Roll 0.130

Pitch 0.170

Yaw 0.065

Selection Criteria

Engine I_nmuics

Aileron Actuator D_cnamics

Aileron Actuator Dynamics

Horizontal Tail Actuator Dynamics

Rudder Actuator Dynamics

Each of the five generalized controls (i.e., axial, vertical, pitch, roll and yaw acceleration) has an

lit

associated control power level. The control distribution matrix (BAc) is defined as a diagonal

matrix where the diagonal elements represent the maximum control power normalized by 100%;

thus, the generalized controls (e.g., 5_) have the units of % maximum control. Because the

OWRA does not have the capability to generate direct side force, the generalized control

distribution matrix (BAc) includes an off-diagonal term to account for the side force due to the

directional control surface. The maximum control does not represent an actual control limit, but a

reasonable level of the available control power that can be achieved in a de,coupled manner.

Based on an assessment of the control power available for the nine flight conditions, the

generalized control distribution matrix is defined as follows for all nine flight conditions:

BAC =

0.0805 0 0 0 0 0

0 0 0 0 0 -0.05

0 0 0.0580 0 0 0

0 0 0 0.0698 0 0

0 0 0 0 0.0180 0

0 0 0 0 0 .0061

4.4 MULTIVARIABLE REGULATOR DESIGN

Linear Quadratic Regtalator (LQR) synthesis techniques were used to design the

multivariable control laws for the OWRA integrated flight control system. The reasons for

choosing LQ were as follows:

- The method is well suited for designing multivariable control laws for aircraft such

as the OWRA which have coupled dynamics.
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- The control law is optimal in the sense that it minimizes the control effort required

to keep the mean-square deviation of the tracking errors as small as possible.

- Cross-coupling of control on states is automatically included so that controls will

not be fighting each other.

Once the performance index and wei_btmg matrices have been chosen, the

procedure is highly automatic. The design procedure which was used for this

program had been developed previously by SCT for the DMICS program [14, 16].

As illustrated in Figure 4-1 the regulator design procedure includes several steps. First a system

state model is assembled. Next, the control law are developed for each of the nine flight

conditions. Finally, gain scheduled control laws are developed from the nine individual solutions.

Features of each step are described below.

4.4.1 System Model Definition

This section describes the state model formulation which is required for synthesizing

explicit model-following control laws. For the OWRA design process the complete 6-DOF system

model comprises 35 states, 10 controls and 51 output quantities. The state model includes

formulations of the open-loop airframe, the MCG, the generalized actuators, and integral error

states. Incorporation of the actuator states (deflection and rates) and the integral error states

provides the means for producing desired frequency shaping. Generally, weighting the actuator

states is used to attenuate the control energy (gain) at high frequencies. The integral error states are

used to increase the control gain at low frequency, and thus, improve steady-state model-following

accuracy.

Figure 4-8 illustrates the general form of design state model. The tracking errors (YE),

which represent the difference between the MCG command and the aircraft's response, are

included as a subset of the design model output vector. The control vector for the design model

includes actuator commands and pilot commands (i.e., MCG model inputs).

State Equations

x
ac

X
MCG

A B 0 0
a¢ ac

0 A 8 0 0

0 0 AMc c 0

It

"CacIc -Dcj_ CMcck 0

X
a¢

x/i

XMCG

. xj£

+

0 0

Bs 0

0 Buc c

0 DMccj '

In l8_

U pilot
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Ou _tDUtEquations

C
ac

Yac

0
Ys

YMcc = 0

Y_
-C acE

YI(
0

q.

D 0 0
m¢

C 8 0 0

0 C-ucc 0

-Dac_ C.Mc% 0

0 0 I

X
a¢

X 8

X cc]
.xj j

+

0 0

D 8 0

0 DMC c

0 DMCGt

0 0

Figure 4-8. System Model for Flight Control System Design

The formulation for each of the component state models shown in Figure 4-8 is described below

with the exception of the MCG model. MCG modeling has already been described in the previous

section.

Aircraft State Model

Linear state models of the aircraft were obtained from the NASA Dryden developed

nonlinear simulation of the OWRW by using a linear model extraction (LME) technique. In the

LME process, the nonlinear simulation independent variables (inputs and states) are perturbed

relative to an operating point (trim solution). The effects of these perturbations on the dependent

variables (state-derivatives and outputs) is used to compute the stability derivatives. This method

for extracting linear state models captures the aerodynamics and inertial coupling effects of the

oblique wing configuration. The resulting six DOF state model contains the following states,

controls and outputs:

Xac = [u,v,w, p,q,r, _,0,_, ]T

Uac = [6 EL,(_ ER,6 AL,(_ AR,_ R] T

Yac = [VT, (z,13,p, q, r,_, 0, ny, nz,7, 13,M, hiT

The control vector produced by the LME procedure is for physical controls. The system state

model, which is used for the regulator design, replaces the physical controls with the generalized

controls as discussed in Section 4.3.
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Generalized Actuators State Model

The generalized actuators are modeled by the transfer function representation presented in

section 4.3. The following state model structure is used for each of the generalized controls. The

output vector includes the generalized actuator output and their deflection rate.

A 8
= [- 2_s ¢os 12 0_8

B 8 =

2
'c8 ¢.o8

2
_8

C 8 = E l Io]I 0 D8 =
2

- 2_st0 s 1 ,_s_s

4.4.2 Regulator Synthesis

The regulator gain synthesis process includes several steps. The fn'st step involves solving

for the state feedback gain matrix using a steady-state solution of the Riccati equation minimize a

quadratic performance index. The next step involves transforming the state feedback control law to

an output feedback control law where the outputs are aircraft sensor measurements. The final step

involves simplifying the control law by removing less important gains. This last step is important

since the control law mechanization is based on in-line code (i.e., matrix operations are not used).

The basis of the LQ method is that a control system is designed which is optimal relative to

a specified performance index. The most common choice for this performance index is the

quadratic form given by

oO

J__--flX Q,X+X N,U+UTNTaT 1xX+ R x u dt

0

Ctrl-C is used to generate the steady-state quadratic optimal regulator gains for this performance

index. Minimization of this performance index results in a constant linear control law: i.e.,

u=-Kxx

0183:29m 4-16



In orderto simplify thedesigner'staskin selecting a suitable structure and parameter values

for the weighting matrices Qx, NX and R X, the performance index is redefined in terms of system

outputs instead of system states: i.e.,

J = fo** [yT Qy + yT Nu + u T N T y+ uT Ru] dt

By doing this and also using a design model structure like the one just described, the

designer can directly relate Q to those quantities that are of interest (i.e., tracking error, control

actuator rate and control authority). The following transformations are used to relate the output

weighting matrices (Q, R) to those required for the LQ solution:

Qx = CT Q C

R x = R + DTN + NTD + DTQD

N x = CTQD + cTN

The matrices C and D are from the system state model described in the previous section.

resulting control law is still a state feedback solution: i.e.,

u=-Kxx

The

As a part of the regulator synthesis process, the state control law is convened to an output

control law by a transformation that maintains the eigenvalues of the closed loop system. This step

is useful in that the engineering interpretation of the resulting LQ gain synthesis process is often

enhanced by having an output gain solution. This transformation can be made whenever the output

vector of the system model which is used for the LQ synthesis provides observability for all of the

system's states and has at least as many output elements as there are states. The following

equation defines the transformation between the state and output control laws.

-Ky: [ I K ( cT WC )'I cTw D Kx(CTWC cTw

Again, the matrices C and D are from the system state model described in the previous section.

The matrix W is a diagonal matrix, and it is used to select those elements of the output vector

which are used for the transformation. The diagonal elements are either unity of some very small

number (e.g., 10"6). None of the diagonal elements can be zero because this would cause a

singular solution. There must be at least as many unity elements as there are states. These

requirements are satisfied for the OWRA control law synthesis task.
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For the original LQ design work, the full six degree-of-freedom (6-DOF) model was used

to determine the regulator gains for a combined longitudinal and lateral-directional control law.

Because of the size of the system model (e.g., 35 states, 10 controls and 51 output quantities), the

required computer solution time was too long for interactive design. When the resulting control

laws were evaluated, it was observed that they were decoupled. The longitudinal control laws

(i.e., the gains for (_:_, 8_ & 8t_) included only longitudinal MCG commanded variables and

longitudinal respo,.se variables). Similarly, the lateral-directional control laws (i.e., the gains for

(8_, & 8 I_) included only lateral-directional MCG commanded variables and lateral-directional

response variables. Based on this observation, the closed loop eigenvalues were computed for two

cases to see if it was possible to perform the OWRA control law synthesis with conventional

longitudinal and lateral-directional problem formulations. The eigenvalues were computed by

starting with a 6-DOF open loop model and then closing the loop f'u'st with the 6-DOF LQ design

and secondly with a control law that was an amalgamation of separate longitudinal and lateral-

directional LQ designs. The results of this comparison, illus_ated in Figure 4-9, show that the

closed loop stability is essentially the same for both design approaches. Because of this, separate

longitudinal and lateral-directional control laws were designed for each of the nine flight

conditions.

12

XA_

....................... : ...................... :...................... . ............................................. . ......................

: t

• 6 DOF LQ Solution

x Combined Longitudinal & Lata'al-

Directional L,Q Solution

IK

X! IIi K

-30 -25 -20 -15 -10 -5

R_ll_

Figure 4-9 Comparison of Closed Loop Eigenvalues for 6-DOF and Separate Longitudinal and
Lateral-Directional LQ Solutions

The regulator synthesis process is based on selecting values for the output weighting and

control usage performance indices Q and R. The process is basically iterative in nature. The goal

is to vary the diagonal terms of Q and R until good model-following and modal decoupling are

achieved without using excessive control. These assessments _ be based on simulating aircraft

responses to pilot inputs. The tracking accuracy is evaluated by comparing aircraft and MCG
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commandedresponses.In addition, closed-loopeigenvaluesalsoneedto beevaluatedin order to
assesssystemstability.

For the tracking problem, as characterized by the system model presented in Figure 4-8,

proportional and integral tracking errors, control surface displacement, and control surface rate are

weighted. All other diagonal terms (i.e., MCG elements for Yac and Yn,cg) are set to zero. Initial

selection of the nonzero Qii terms can be based on something like Bryson's rule (i.e.,

(Qii = 1/yi2imax )" Experience has shown that the control weighting indices (Rii) associated with the

generalized actuator commands can be set initially to unity. The weighting terms for the

generalized actuators can be reduced to improve tracking performance. The other terms in the

control vector (i.e., MCG and gust inputs) must be assigned very large values. By doing this,

these inputs are effectively eliminated from the control law. As a test, the Rii terms associated with

the MCG inputs need to be large enough such that the closed-loop and open-loop eigenvalues of

the MCG state model are the same.

Selection of diagonal elements of Q & R is an iterative process. The first design goal is to

select values for Q ii and Rii that yield good model-following performance and disturbance

rejection. This is best done through the evaluation of wansients for both pilot and gust inputs. For

example, the weighting parameters for Qt, 0e, JOe, and _i _ can be adjusted to achieve good pitch

rate tracking performance. After good tracking performance, disturbance rejection, and response

decoupling are achieved, control surface rate can be penalized to reduce the high frequency control

activity. Frequency responses of the generalized controls are a good means for assessing high

frequency control activity. Selected values for the weighting matrices for both the longitudinal and

lateral-directional control laws are presented in Figures 4-9 and 4-10, respectively.

Figures 4-9 and 4-10 also provide specifications for the Wii's which are part of the state to

output control law transformation. For the longitudinal control law, the combination of actuator

deflections and rates, commanded variables and tracking errors exceeds the number of states. A

subset of these variables were selected for the transformation based on an analysis of the resulting

output gain matrices. For example,when some of the commanded variables were included in the

transformation, the gain relating Qc to _ had the wrong sign. This type of analysis led to the

elimination of nzc and Qc from the longitudinal weighting matrix.

m
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4.4.3 Control Law Simplification and Gain Scheduling

The objective for this step is to develop control law definitions that provide a continuous

variation in gains with flight condition and aircraft configuration parameters. A second objective is

to reduce the complexity of each control law by eliminating those gain elements which can be

removed without causing a significant change in either the closed loop eigenvalues or the aircraft's

model-following performance. This simplification step is important since a reduction in the

number of gain elements directly reduces the amount of time which is required to process the

control law with in-line code. A second mason for eliminating some of the gain terms, specifically

some of the feedforward gains, is to improve the transient response to pilot commands when a

common regulator gain solution (i.e., gain scheduling) is used for a broad range of operating

points.

Structural considerations were used to eliminate a number of gains from the control laws.

First, the actuator frequency command shaping, which results from the feedback of generalized

actuator position and its rate, was decoupled for each generalized actuator. For example, the pitch

axis control law (5_c) contains only 5_ and d(5(_)/dt for actuator frequency compensation.

Second, each feedforward acceleration command from the MCG was connected to only a single

controller (e.g., (_c --_ 5Qc). Finally, integral error control was isolated to a single axis of control

(e.g., j" Oe --) _['c)"

Because all gains for the vertical axis controller were found to be small, the vertical axis

control law was eliminated from the control system. The largest gains would at the most produce

5ff commands of only one or two percent. This result is not too surprising because the

longitudinal MCG was designed to generate commands for a conventional aircraft response (i.e.,

the load factor and pitch rate responses did not presume the availability of direct lift control).

Because all of the longitudinal gains were essentially independent of the design flight

condition, average values were determined for each gain. Because the gains for both the roll and

yaw axis control laws varied with flight condition, regression techniques were used used to

establish appropriate scheduling schemes. Figures 4-11 and 4-12 present the longitudinal and

lateral-directional control laws that resulted from the gain scheduling and simplification analysis.

Once the control law has been simplified as defined in Figures 4-11 and 4-12, it is

necessary to check both the closed-loop eigenvalues for stability and transient response

performance at each of the design poirts. The evaluation of the control system with the gain

scheduled control laws is presented in Section 5.
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Axial Axis Control Law

813c = Ku l*0c + Ku 2 *Vc + Ku3*Vc + Ku 4*VE + Ku 5 * Jve

where,

KU1 = 7.00

KU2 - 10.76

KU3 = -0.20

KU4 -- 26.59

KU5 ---23.25

(%/deg)

(%/fps2)

(%/fps)

(%/fps)

(%/fps-sec)

Pitch Axis Control Law

= KQI*

KQ6* S0_

+ KQ 2*ctc+ KQ 3*QE + KQ 4 *at+ KQ5 *0e +

where,

KQ1 = 0.0226

KQ2 = 14.23

KQ3 = 12.17

KQ4 = -13.12

KQ5 = 59.55

KQ6 = 85.04

(%/deg/sec 2)

(%/deg)

(%/deg/sec)

(%/deg/sec)

(%/deg)

(%/deg-sec)

Figure 4-11 Longitudinal Control Laws
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Roll Axis Control Law

+ Kp 2 * Pc + KP3* Pe + KP4 * ¢¢ + KP5

KP1 = 0.20 + .065*cosA + .027*qr 1 - -018*qr 3

KP2 = -55.0 + 1.77*cosA + .40*qr 1 - .24*qr 3

KP3 = 2.59 + 1.1 l'sirrA + .17*qr 1 " -38*qrl*COsA

KP4 = 33.87 - 9.36*sinA + 1.95*qr 1 - 1.02*qr 3

KP5 = 0.17 - 1.99*qr 1

KP6 =-5.51 - l12.5*qr 1 + 16.3*qr 3 + 130"3*qrl*C°sA

KP7 -- -67.4 + 18.7*sinA - 3.89"qr I + 1-97*qr 3

Yaw Axis Control Law

_1_c = KR l-Pc + KR 2*Bc + KR3*P¢ + KP,,4

KR7* I I_e

KR1 = 2.57 - 8.50*qr I + 5.58"qr 2

KR2 = 14.58 - 45.39"qr 1 + 24.59"qr 2 - 14.71*cosA

KR3 - 4.35 - 5.02*cosA - 0.79*qr 1 + 0.48*qr 3

KR4 = 18.91 - 19.43"cosA

KR5 - -23.46 + 5.95"qr 1 - 3-17*qr 2

KR6 -- -90.54 + 39.89"qr 1 " 21-82"qr 2

KR7 = -160.00

* Ct: + KR 5

* Be + KP6* Be +

* B_. + KR6* BE +

where,

qrl- 3_.59 1.0 ; qr 2- qrl*lqrll; qr3 = qrl

Figure 4-12 Lateral-Directional Control Laws
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4.5 CONTROL SELECTOR DESIGN

The primary function of the control selector is to transform the generalized control

commands, which are generated by the flight control system regulator, to commands for the

aircraft's control surface actuators and the propulsion control system. The design requirement for

this transformation is "J match the loop gain of the integrated flight/propulsion control system with

a closed loop system based on generalized controls. With reference to Figure 4-13, the MIMO

transfer function from 5" -a A:_CONT must be matched. Both control power and actuator
c

dynamics must be considered in matching the transfer functions between the generalized control

mechanization (top part of Figure 4-13 and the IFPC mechanization (lower part of Figure 4-13).

The process for transforming generalized controls (_i_) to physical controls (5c) is based on a

transformation matrix: i.e.,

-

The control transformation matrix (Tcs)is based on solving a pseudo inverse on-line.

following expression defines the expression for computing TCS:

TCS = NMA X (BAc NMAX) # BAC

The

(BAc NMAX) # is the pseudo inverse of the control distribution matrix for the physical controls

B AC. BAC is the control distribution matrix for the generalized controls, and NMA X is a

normalization matrix 1 for the pseudo inverse computation.

Each element of BAC is computed from models that define the effectiveness of the

aerodynamic control surfaces and that due to net thrust These computations are computed on line

and they account for the aircraft's current flight condition and operating point. BAC:

1 The scaling matrix (NMAX) is normally invertedfor solving the pseudo inverseof a matrix. When itis inverted,the

pseudo inverse solution also requires an inverse of the scaling matrix. For real time considerations, the requirement for

solving a double inverse is eliminated by using the above expression for the pseudo inverse and the definition for the
weighting matrix as defined below.
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BAC

XTN XSHsy M 0 XSAsy M 0 0

0 0 LSHA$ Y 0 LSAAs Y LSR

0 MSHsy M 0 MSAsy M 0 0

0 0 NSHA$ Y 0 NSAAs Y NSR

Aerodynamic terms are modeled by equations that define the dimensional stability

parameters as a function of the reference geometry, mass and inertia properties, the dynamic

pressure and a nondimensional stability derivative: i.e.,

SW

XS0 - m Cx_

(S'w Sw

MS0 - ]y Cms0

q bwSw

LS0 - Ix Cis0

q bwSw

NS0 - Iz Cn_0

Aircraft mass and inertias are computed on line as a function of wing skew position (see Figure 2-

3) and aircraft fuel weight. The nondimensional stability derivatives (e.g., CmSHSYM : the change

in pitching moment coefficient due to symmetric horizontal tail deflection) are based on the

OWRA's aerodynamic data base. Table lookup or curve fitted expressions could be used to

implement the stability derivatives. The single stability parameter for net thrust (XTN) is modeled

as follows:

XTN = m

The normalization matrix NMA X is used to establish relative weighting between the various

aerodynamic controls and propulsion system force/moment producers. NMA X is a diagonal matrix

with each element along the diagonal being the maximum allowed control deflection or change in

thrust magnitude at any point during the flight.
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V. DESIGN EVALUATION

5.1 OVERVIEW

An evaluation of the explicit model-following control system designed for the Oblique

Wing Research Aircraft is presented in this section of the report. The primary objective of this

evaluation centered on demonstrating the model-following performance of the gain scheduled

control system. Because the MCG was designed to embody Level 1 flying quality properties and

its structure assumes decoupled control of the longitudinal and lateral-directional degrees of

freedom, the model-following performance is indicative of how well the design goals (see Section

4.2.1) have been achieved.

Evaluation results are presented in three subsections. The first presents an analysis of the

closed loop stability of the OWRA with the gain scheduled control system. Next, frequency

responses of the MCG commanded variables and corresponding aircraft responses are compared.

Finally, iransient responses for pilot stick, pedal and speed commands are presented for all nine

flight conditions.

5.2 SYSTEM STABILITY ANALYSIS

The purpose of the stability analysis was to assess how much the closed loop stability was

affected by the selected gain schedule formulation of the control law. This assessment is based on

plotting the eigenvalues of the gain scheduled control laws and those from the individual designs

for each of the nine flight conditions (see Figures 5-1 through 5-9). As shown, the closed loop

eigenvalues are altered by the gain scheduling, but the overall system stability is retained.
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Figure 5-1 Effect of Gain Scheduling on Closed Loop Stability: Case 1
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Figure 5-9 Effect of Gain Scheduling on Closed Loop Stability: Case 9
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$.3 FREQUENCY RESPONSES

Figures 5-10 through 5-13 present frequency responses that compare the MCG commands

with the aircraft's response for pitch rate, airspeed, roll rate and sideslip, respectively. These

frequency responses were generated for the 2ain scheduled control system for design flight

condition #2 (A =55°; M = 0.8; h = 20,G_,_ ft). As shown by these frequency responses, the

steady state tracking is perfect. This is to be expected as a result of including integral error conn-ol

as a part of the control strategy. Tracking accuracy is very good with the response of the aircraft

being nearly identical to that of the MCG up to the frequency at which the roll-off in the response

exceeds -20 db. The difference in the phase responses at high frequencies is due to the fact that the

aircraft's response includes additional dynamics (i.e., the generalized actuators).
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5.4 TRANSIENT RESPONSES

Transient responses have been generated for longitudinal stick deflection (_slon), airspeed

commands (AV), lateral stick deflection (Sslat), and pedal force commands (AFped) for each of the

nine flight conditions (see Table 1-1). The properties of the standard set of command variables are

defined in Figure 5-14. The aircraft's longitudinal, lateral-di"ectional and control surface

responses are presented to document the transient performance of the gain scheduled flight control

system. Responses for the following set of variables are presented in Figures 5-15 through 5-50.

Plot Variable Variable Description Units

Q pitch rate deg/sec

ct angle-of-attack deg

V airspeed fps

0 pitch attitude deg

P roll rate deg/sec

R yaw rate deg/sec

13 sideslip deg

bank angle deg

generalized axial acceleration control %

8_ generalized pitch acceleration conn'ol %

8_, generalized roll acceleration control %

generalized yaw acceleration control %

The responses for each of the nine flight conditions are generally similar. This is a

reflection of the explicit model-following design philosophy and the design features of the

Maneuver Command Generator. The model-following capability of the proportional/integral error

control regulator contributes to the overall uniformity of these responses. Basically, the aircraft's

response mirrors the MCG commands when the regulator provides good tracking performance.

Thus, the differences in the responses from one flight condition to the next reflect mostly changes

in the MCG's commands. As it was discussed in Section 4, the properties of the roll and airspeed

command generators are identical for all nine flight conditions. The properties for the pitch rate

MCG and the desired frequency for the directional MCG are flight condition dependent. However,

the variation from one flight condition to the next is well behaved.
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The transientperformancefor each of the four inputs is summarized as follows:

Longitudinal Stick Commands

- The pitch rate response reflects the desired short period dynamics and the rate

command/attitude hold design feature.

- Airspeed is held constant throughout the pitch maneuver.

- Lateral-directional responses arc essentially suppre.ssext completely.

- Generalized control responses are well behaved; the large change in 5i_

reflects the axial control required to retrirn the aircraft after an approximate 8 °

change in pitch attitude and flight path angle.

Airspeed Commands

- The airspeed response is rapid and well damped.

- The changes in tt and e with airspeed are due to the retrimming logic in the
o

longitudinal MCG (i.e., the AV --_ AQ path). Because the changes in tx and

O are nearly identical, the desired result of keeping flight path constant is

achieved.

- Lateral-directional responses are essentially suppressed completely.

- Generalized control responses are well behaved; the large initial value for 5t3

reflects the level of control required to accelerate the OWRA from a trimmed

flight condition.

Lateral Stick (_ommands

- The roll rate command/attitude hold design feature is achieved.

- Turn coordination is excellent.

- Longitudinal responses are essentially suppressed completely.

- Generalized control responses are well behaved and small.

Pedal Commands

- The sideslip response is rapid and well damped.

- The desired roll response is completely de,coupled.

- Longitudinal responses are essentially suppressed completely.

- Generalized control responses are well behaved; the large value for _ reflects

the level of available directional control power for the OWRA.
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VI. CONCLUSIONS

A Linear Quadratic Regulator synthesis technique was used to design an explicit model-

following control system for the Oblique Wing Research Aircraft. The forward path model (called

the Maneuver Command Generator) was designed to incorporate the desired flying qualities and

response decoupling. The LQR synthesis was based on the use of generalized controls, and it was

structured to provide a proportional/integral error regulator with feedforward compensation. An

unexpected consequence of this design approach was the ability to decouple the control synthesis

into separate longitudinal and lateral-directional designs. This not only simplified the control law

synthesis task, but it also removed all lateral-directional variables from the longitudinal control law

and all longitudinal variables from the lateral-directional control law.

Longitudinal and lateral-directional control laws were generated for each of the nine design

flight conditions (see Table 1.1), and gain scheduling requirements were addressed. The axial and

pitch axis control laws did not require any gain scheduling. The roll and yaw axis control laws

required gain scheduling to accommodate regulator gain variations with dynamic pressure and

wing skew position.

A fully coupled 6-DOF open loop model of the OWRA along with the longitudinal and

lateral-directional control laws was used to assess the closed loop performance of the design.

Evaluations were performed for each of the nine design flight conditions. The explicit model-

following control system provides excellent stability and performance robustness for the OWRA.

Minimum closed loop damping ratios are all greater than _ > .6, and the model-following

performance is excellent. Control activity to achieve the desired model-following accuracy is

reasonable. Because of the control system's ability to closely track MCG commands, the aircraft

responds to pilot commands as though it were a well behaved conventional (i.e., symmetric

winged) aircraft.
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